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1. INTRODUCTION 

THE OBJECTIVE of the present study is to apply Gyarntati’s 
variational principle, which offers a genuine treatment of 
the~odynamics of irreversible processes, to obtain a rapid 
analytical solution to laminar flow and heat transfer in 
axisymmetric stagnation point boundary layer flow. Accord- 
ing to boundary layer theory the irreversible processes of 
momentum and heat transfer in flows around bodies occur 
mainly inside a thin layer adjacent to the surface of the 
body. Therefore, it is quite appropriate to study these non- 
equilibrium processes by the method of irreversible thermo- 
dynamics. The variational principle is fo~ulat~ for the 
present system and the non-linear boundary layer equations 
are reduced to simple polynomial equations. 

2. BASIC EQUATIONS 

The viscous and thermal boundary layer equations for 
steady, incomp~ssible, laminar and axisymmetric stagnation 
point flow are 

- - = 0 (continuity) 
Kw + WV 

ax aY 

u g + V FY = U, $F t y gyy (momentum) 

and 

8T dT 8T 
U~X+ VE= eray2 (energy) (I) 

where U,&‘) = 4X. The associated boundary conditions are 

Y=O: U= V=O, T= T,,(X) 

Y==co: U= U_,(X), T= T, 
(2) 

where T,, and T, satisfy the power law 

T,-T, = cX”. (3) 
With the help of Mangler’s transformation 

x = X’/312 and y = XYjl (4) 

the conserva~on equations (1) are transformed into the fol- 
lowing equations : 

!?!!+au,o 
ax ay 

Since 

U,(x) = 4312x)“’ = kc”3 (6) 

the conservation equations (5) correspond to the two-dimen- 
sional flow over a wedge of angle n/2. 

3. FORMULATION OF GYARMATI’S 
PRINCIPLE 

The variational principle developed by Gyarmati on the 
basis of thermodynamic principles which is well known as 
‘The Governing Principle of Dissipative Processes’ is given 
in its energy picture [l, 21 as 

6 
I 

(To-_tir*-+*)dV= 0 
” (7) 

where Tu is the energy dissipation. 
The variational principle (7) for the present problem 

assumes the foliowing form : 

The essence of the present variational procedure is the 
reformulation of the original set of partial differential equa- 
tions (5) in terms of the variational principle (8). 

4. SOLUTION PROCEDURE 

Let us assume that the velocity and temperature dis- 
tributions in their respective boundary layers are the fol- 
lowing polynomials : 

u/U, = 3y/d, - 3y2/d: 

+y3,‘d: (y < d,); u = u, fy 3 d,) (9) 

(T-T_)/(T,-TT,) = I-3y/2d, 

+y3/2d: (Y < 4); T= T, (y 2 dz). 

These profiles satisfy the following conditions : 

y=o: u=o, 
d2T 

T= T,(x), --0 ay' - 

y = d, : tl= U,(x), (W 

y,= d2: T= T,,,, 

The smooth-fit conditions &jay = 0 and aT/ay = 0 cor- 
respond to Ptt = 0 and J, = 0 at the respective edges of the 
boundary layers. Both dt and d2 are unknown parameters 
and they are to be determined by the variational process. 

The velocity and temperature functions (9) are substituted 
in the momentum and energy balance equations (5) and on 
integration with respect to y with the help of smooth-fit 
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NOMENCLATURE 

d, hydrodynamical boundary layer 
thickness 

d, thermal boundary layer thickness 

J, heat flux 
L,, LZ Lagrangian densities 
L,, L3 conductivities 
P1Z momentum flux 

V volume of continuum. 

Greek symbols 
6 symbol for variation 
A ratio of d, to d, 

j*, Cp* 
entropy production 
local dissipation potentials in energy picture. 

boundary conditions, the fluxes Pi2 and Jq are obtained, 
respectively. The expression for P,, remains the same for any 
Prandtl number P. But the energy flux Jp assumes different 
expressions for P < 1 and P 2 1, respecttvely. When P Q 1, 
the expression for J, in the range d, < y & d, is obtained first 
and the expression for Jq in the range 0 < y < d, is deter- 
mined subsequently by matching the J, expressions of the 
two regions at the interface. 

Using the expressions of P,* and Jq along with the velocity 
and temperature functions (9) the variational principle (8) is 
formulated. After carrying out the integration with respect 
to y one can obtain the variational principle in the following 
form : 

and 

6 
I 

‘l,(d,,d,,d;,d;)dx = 0 (Pa 1) (12) 
II 

where primes indicate differentiation with respect to x. The 
variational principles (11) and (12) are found identical in the 
case d, = d,. The parameters to be varied independently in 
equations (11) and (12) are d, and d2. Accordingly, the Euler- 
Lagrange equations are 

aL,, d ah, ‘-_._-- ..---!- =o 
adI [ 1 dx ad; (13) 

cps lx (14) 

Equations (13) and (14) are second-order ordinary differ- 
ential equations in d, and d2, respectively. The procedure of 
solving equations (13) and (14) can be considerably sim- 
plified by introducing the non-dimensional layer thicknesses 
d: and d: given by 

d,,, = d:,z,/(YxlU,). (15) 

The variational principles (11) and (12) are subject to trans- 
formation (15) and the resulting Euler-Lagrange equations 
are obtained as simple polynomial equations 

aLi, 
ad: 

=o (PSl) 

(16) 

(17) 

the explicit expressions ofwhich are given by equations (Alk 
(A3) in the Appendix. 

The hydrodynamical boundary layer thickness dj’ is 
obtained as the only real and positive root of equation (16). 
The polynomial equations (17) are solved numerically for 
given values of P and n and it is found that every pair of P 
and n values correspond to only one real and positive root 
d:. 

The dimensionless heat transfer coefficient at the wail is 
calculated with the help of the relation 

NUI = J(yx/&(T,- T,)‘)( J.#&o 08) 
where the explicit expression for ( Jq/LA&, is given by equa- 
tions (A4) and (A5) in the Appendix. 

The local heat transfer in the case of axisymmetric stag- 
nation point flow is given by 

Using Mangler’s transformation (4) and the relation 

we obtain the equation 

Nu, = ,/3Nu,. (21) 

5. ANALYSIS OF RESULTS 

Whenever a problem is treated with a new method, it 
is customary to compare the obtained results with other 
numerical results in order to estimate the accuracy involved. 

Table 1 exhibits the comparison of Sibulkin’s numerical 
values with the present solutions. It can be easily observed 
that our approximate analytical solutions are as good as 
numerical results and the error hardly exceeds 0.5%. 

An interesting feature of the present solution is the van- 
ishing of the local heat transfer at n = -Z/3 for any P. 

In order to observe the behaviour of local heat transfer, 
we plot the values of K,sainst Prandtl number in Figs. 1 
and 2. Figure 1 predicts Nu, values in the range 0 < P < 1 
with the help of five curves corresponding to different values 
of n. Figure 2 deals with Nu, values in the range 1 < P < co. 
Figures 1 and 2 establish the fact that Nu, increases with n 
and that the increase is quite rapid when n is large. Further, 
it can be easily seen that x, approaches a limiting value 
when P tends to zero. 

6. CONCLUDING REMARKS 

This paper presents a complete analytical answer to heat 
transfer in axisymmetric stagnation point flow. The govern- 
ing equations of the problem are transformed into simple 

Table 1. Comparison of present results with numerical 
solutions (n = 0) 

Present values 
Sibulkin [3] (approximate 

P (numerical) analytical) 

0.6 0.625 0.627 
0.8 0.700 0.700 
1 0.763 0.762 
2 0.988 0.985 

10 1.760 1.751 
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FIG. 1. Local Nusselt number as a function of log,, P 
(10m4 < P S 1) for various values of n. 

polynomial equations (AlE(A3) the coefficients of which 
are functions of the independent parameters P and n. These 
equations offer any practising engineer a rapid way of obtain- 
ing heat transfer at the wall for given values of P and n. One 
should also note that the solution of the present problem is 
obtained with remarkable ease by this variational procedure 
especially when compared with the formidable task of solving 
the governing equations numerically. The amount of labour, 
time and cost involved in the present approach is certainly 
less than that of the numerical procedure. The method of 
solution exhibited here has the further advantage of obtain- 
ing analytical solution for the problem rather than simply 

Lw,o p - 

FIG. 2. Local Nusselt number vs log,, P(l d P < 104) for 
various values of n. 

displaying a table of numerical values. The agreement of the 
present results with available numerical solutions establishes 
the fact that the present thermodynamic method, based on 
sound physical reasoning, is a powerful tool for obtaining a 
rapid analytical solution to boundary layer problems. 
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APPENDIX 

Substitution of d,,, from equation (15) in the variational 
principles (11) and (12) and the variation of these principles 
with respect to the independent parameters d: and d: yield 
the Euler-Lagrange equations 

aLi,* 
ad: O 

or 

d:4(21.9994)-d:2(65.47603)-4000 = 0 (Al) 

or 

d: = 3.879972 

aL, 2 --=O 
ad: 

or 

d:9P2(3.27381n2+6.547619n+3.809524) 

-d:7[P(13.92857n+17.14285)+P2d:2(l.875n2 

+ 1.25n)]-d:5[60+ Pd:‘(7.5)n+ P2df4(5.083333n 

- l.00595n2)]-d;4[Pd:‘(35-7.5n) 

+P2d~s(0.26461nz+0.3924504n+6.882843)] 

+d:3[Pd:4(l.07145)n+ PzdT6(8.66788n 

-0.213474n2)]+d:‘[Pd:5(49.28572-2.14284n) 

+P2d:‘(0.109016nz-5.544807n+7.006965)] 

-Pd:7(12.44047-0.1785754n)-P2d:9(0.005337n2 

-0.558244n+2.232084) = 0 (P < 1) (A2) 

and 

d~“‘Pz(1.000874nz+ 1.501312n 

+0.5900341)-d~9d~Pz(9.46042n2 

+ 14.49676n+5.844686)+d:8dj’2P2(38.93358n2 

+61.52536n+25.68462)-d:7dfsP2(77.94642nz 

+ 126.4583n+54.82128)+d:6d:4P2(67.77597n2 

+l12.9599n’f51.40695)-d~5d~3P(64.28574n+50) 

+d:4d:4P(253.5714n+209.5239) 

-d:3d:5P(337.5n+312.5) 

-600dy6 = 0 (P > 1). (A3) 

The value of d: from equation (A 1) is substituted in equa- 
tions (A2) and (A3), respectively, and these equations are 
solved numerically for d: with given values of P and n. The 
values of d: and d: which are uniquely determined as above 
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are substituted in the following local energy flux expressions : = @W&)(7’,- T,)fl.5d;(0.2A2-A3/6 

(- J,IL),=, = (pu,/W’u - T,)Il.% (3/2OA +3A4/70)+d;(-0.6A+3A2/8-3A.‘/35) 

-31/42OA’)+d;(-3/8+3/4OA’ -3/280A4) +(nd,/.x)(-0.3A+A2/8-3A3/140) 

+(nd,/x)( -3/8+0.25/A-3/408* +0.5(&/x)(-0.2A+A2/12 

+ l/280A4)+0.5(d,/x)(-0.25+0.2/A* -A3/70)] (P > 1) 

- 17/21OA’)] (P $ 1) (A4) and the local heat transfer is computed. 
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‘I. INTRODUCTION formations and initial conditions : 

THE LAMINAR flow situation that is our concern here is zero 
pressure gradient and unity Prandtl number fluid flow over 
a semi-infinite plate of uniform temperature. For the flow 
under consideration, Meksyn [I] presented series solutions of 
the governing momentum and energy equations ; the relevant 
equations and boundary conditions are 

f”’ +ff” = 0 (1) 

8” +f0’ = 0 (2) 

f(0) = f’(0) = 0 ; f’(m) --* 1 (3) 

6(O) = 1 ; @(cm) -P 0. (4) 

Here f and 9 denote the non-dimensional stream-function 
and temperature, respectively ; primes denote derivatives 
with respect to y. In brief, Meksyn uses the Blasius series 

f= &4&r? = ~(~v2/2!)-u~(~‘/5!~ 

+lla3(y8/8!)-375a4(y”/ll!)f27897aS(y’4/14!)... (5) 

where A, are the coefficients and f”(0) = a, to integrate 
equations (1) and (2). The end result is that the temperature 
distribution is a combination of two series: one being in 
terms of the incomplete gamma function and the other for 
0’(O). The series for W(0) is given by 

0’(O) = -0.478/[1+ l/45- l/405.. .I. (6) 

Y = r/s, F= sx a = l/s’, (de/dy)~=~ = c (say). (7) 

The initial value problems to be solved are 

F”‘+FF”=O (8) 

6”+ FW = 0 (9) 

F(O) = F’(0) = 0, F”(0) = 1 (10) 

0(O) = 1, 0’(O) = cs = b (say). (11) 

Here (and in what follows) primes denote derivatives with 
respect to Y. The parameters s and b are to be estimated 
satisfying the conditions that F’(Y) -+ sz and B(Y) -+ 0 as 
Y-CO. 

Using Maclaurin’s series expansion one obtains from 
equations (8).--( 1 I) 

F= (Y’~2!)-(Ys/5!)+ll(Y8/8!)-375(Y”~ll!) 

+27897(Y’4/14!)-...+RU (12) 

8= l+bY-b(Y4/4!)+llb(Y7/7!)-375b(Y’c,’10!) 

+27897b(Y”/13!)..,+Rp. (13) 

Here R, and RP denote the remainders. Comparing series 
(12) and (5), we note that they differ by the scaling factors 
introduced in equations (7). 

For the flow under consideration, the Reynolds analogy 
suggests that skin-friction is a direct measure of wall heat 
transfer rate (21. However, relation (6) does not lead to this 
explicit relation. It appears that only the functional analysis 
of the Reynolds analogy between momentum and heat trans- 
fer can provide such an explicit relation. Also, it appears (to 
the author’s knowledge) that no attempt was made in the 
past to arrive at this explicit relation using series solutions 
of equations (l)(4). The aim of this note is to show that the 
series solutions of equations (l>-(4) can be used to develop 
this explicit relation between the skin-friction and wall heat 
transfer rate. 

Recently, Torok and Advani [3] have shown that a series 
solution to a non-linear initial value problem can be obtained 
via infmitesimal generators. Expressing equations (8) and 
(10) as three first-order differential equations (for the sake 
of brevity, details are not given here), one obtains series (12). 
In this case, this series represents a continuous group of 
transfo~ations parameterized by Y. Given a point on a 
trajectory, which is an invariant curve of the transfo~ation 
group 131, a point is mapped onto another along the tra- 
jectory as Y advances. This possibly implies that series (12) 
is not only true for small Y [2,4], but for all Y. 

2. ANALYSIS 

For the sake of convenience, we convert equations (lt(4) 
into initial value problems using the following trans- 

However, series (12) does not appear to converge so easily 
in the sense that F’ (obtained from series (12)) does not attain 
its asymptotic values as Y + co. Shank’s transformation [5] 
applied to only five terms of the series appears to accelerate 
the convergence rate; e.g. from Table 1 (this table contains 
the results for Y = 3 and 6) we see that at Y = 6, repeated 
use of this transformation drastically reduces the F’ value 
from 52 826 (= S,) to 2.07! Noting the observation of Van 
Dyke [6] that at least 15 terms are required to obtain the 


